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ABSTRACT 

This report  summarizes investigations which considered the 

t r a j e c t o r i e s  resu l t ing  from the application of a s m a l l  t h r u s t  t o  an 

object  i n  a n  inverse square central  force f i e ld .  Analytical  solut ions 

f o r  the spec ia l  cases involving radial ,  normal, circumferential ,  and 

tangent ia l  thrust ing a r e  reviewed and extended. A second-order pertur- 

ba t ion  theory is derived f o r  a vehicle departing from a c i r cu la r  o rb i t .  

The t r a j ec to ry  is produced by a thrust  vector maintained a t  a constant,  

but a r b i t r a r i l y  chosen, angle with respect t o  the radius vector. Numerical 

r e s u l t s  of 

low-thrust 

e l  l i p  t ical  

the second-order theory are presented which show representat ive 

t r a j ec to r i e s .  The perturbation theory i s  extended t o  accept 

o rb i t  s t a r t i n g  conditions. 
Tcir& 

ii 



CONTENTS 

SECTION PAGE 

1 INTRODUCTION . e 1 

2 UW-THRUST TWECTORLES - SPECIAL CASES . . . . . . 3 

2.1 Approximate Solution for Low Radial Thrust . . . . . 3 
2.2 Approximate Solution for Low Normal Thrust . . . . . . 11 
2 .3  Approximate Solution for Low Tangential or 

Circumferential Thrust Using the Asymptotic Method . . 21 

3 PERTURBATION SOLUTIONS OF THE EQUATIONS OF MOTION . . . . 37 

3 . 1  Perturbation Solutions Starting From a Circular Orbit .  37 
3.2 Some Generalizations of the Perturbation Theory . . . 55 

4 CONCLUSIONS . . . . . . . . . . . . . . . . . . . 60 

REFERENCES . . . . 63 

iii 



FITGURE 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

ILLUSTRATIONS 

PAGE 

7 Radial Thrust Function F(X) 

Radial Thrust Trajectories . . . . . . . . . . . . . . . . . . .  10 
Normal Thrust Geometry . . . . . . . . . . . . . . . . . . . . .  13 

RegionsofMotion. . . . . . . . . . . . . . . . . . . . . . . .  18 

20 

22 

26 

38 

52 

53 

. . . . . . . . . . . . . . . . . .  

Trajectories p = p ( 7 )  . . . . . . . . . . . . . . . . . . . . .  
. . . . . . . . . . . . . . . . . . . . . . .  Totality of Motion 

Tangential and Circumferential Thrust Geolletry 

General Lag-Thrust Geometry 

Representative Lox Thrust Trajectories 

Orbit Transfer Geometry 

. . . . . . . . .  
. . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . .  
. . . . . . . . . . . . . . . . . . . . .  

i v  



e 
1 
I 
c 
s. 

SYMBOLS 

1 
1 
E 
t 
I 
t 

r 

r 

P 
0 

t 

r 
9 

@ 
J /  
S 

a 
f 

M 

n 

e 

e 

0 

X 

7 

V 

E 

h 

i 

U 

0 (d 

AP 

o r b i t  radius  = distances from center  of a t t r a c t i o n  t o  the vehic le  

i n i t i a l  o r b i t  radius 

dimensionless o rb i t  radius 

time measured from i n i t i a l  posi t ion 

dimens ionless  t i m e  

polar  angle measured from i n i t i a l  pos i t ion  

angle between the radius vector and the instantaneous ve loc i ty  vector .  

angle between the radius vector and the t h rus t  vector  

dimensionless arc length 

thrust acce lera t ion  i n i t i a l  g rav i ta t iona l  acce lera t ion  

thrus t ing  force 

mean anomaly 

mean motion of an i n i t i a l l y  c i r cu la r  o r b i t  

eccen t r i c i ty  

exp [ x ] 
k ine t i c  energy 

, the  exponential function 

ve loc i ty  

instantaneous energy 

instantaneous angular momentum 

I$-i- 
1 / P  
the  neglected terms of an i n f i n i t e  series i n  which the coef f ic ien ts  

of the  neglected t e r n  have pos i t ive  powers of a as fac tors  

a der ivat ive with respect t o  t i m e  when the  dot i s  Over a var iab le  

deviation from the reference c i r c u l a r  o rb i t  radius 
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SECTION 1 

INTRODUCTION 

This report  8 ummar ize s invest igat ions performed a t  Aeronutronic 

under Contract NAS 8-5248, during the period from March 23, 1963 t o  March 23, 

1964. The subject of these investigations has been the t r a j e c t o r i e s  r e su l t -  

ing from the appl icat ion of a small t h rus t  t o  an object i n  an inverse square 

cen t r a l  force f i e l d .  In t e re s t  i n  l o w i h r u s t  t r a j e c t o r i e s  has been incressing 

i n  p a r a l l e l  with development e f f o r t s  t o  accomplish workable low-thrust 

e l e c t r i c a l  propulsion systems. When the propulsion technology has su f f i c i en t ly  

evolved, low th rus t  devices w i l l  f i n d  appl icat ion t o  such diverse space 

missions a s  interplanetary t ransfers ,  s t a t i o n  keeping and a t t i t u d e  control  

of geocentric s a t e l l i t e s ,  and enlargement or modification of geocentric 

s a t e l l i t e  o rb i t s .  

Analysis of low-thrust t r a j e c t o r i e s  has ,  fo r  the most par t ,  been 

concentrated i n  areas  best  suited t o  interplanetary t ransfers .  For such 

t r ans fe r s ,  the r a t i o  of t h rus t  accelerat ion t o  grav i ta t iona l  accelerat ion is  

such that the t ra jec tory  involves a he l iocent r ic  a r c  of less than one 

revolution. 

Two general approaches have been anployed by various invest igators  

i n  examining such t r a j ec to r i e s .  One approach (h i s to r i cz l ly  the f i rs t )  has 

been t o  evaluate, by ana ly t i ca l  techniques, the t r a j e c t o r i e s  r e su l t i ng  from 

the  appl icat ion of a th rus t  acceleration which obeys a preselected th rus t  

-1- 



J i r e c t i o n  program. 

general ly  consisted of thrust ing along the f l i g h t  path, normal t o  the  f l i g h t  

path,  along the radius vector,  o r  normal to  the radius vector.  O f  a l l  these 

p o s s i b i l i t i e s ,  only the case of rad ia l  thrust ing has yielded closed form 

a n a l y t i c a l  solutions.  The other thrust  programs have been t reated approxi- 

mate13 by asymptotic techniques or perturbation theory. 

Thrust programs considered fo r  p l a n a r  problems have 

The second general approach t o  the low t h r u s t  t r a j ec to ry  problem 

has involved the determination of optimal th rus t  programs rr:,ing the  calculus 

of var ia t ions.  These  e f f o r t s  are extremely valuable, but  are hampered by 

a n a l y t i c a l  complexities which necessi ta te  the use of numerical techniques fo r  

all but  the most t r i v i a l  cases. These problems a r e  fur ther  compounded when 

t r a j e c t o r i e s  i n  a strong gravi ta t ional  f i e l d  a r e  considered. Such trajectories 

(in geocentric space, fo r  example) may involve macy revolutions about the 

c e n t r a l  body, making the use of ordinary numerical in tegra t ion  techniques 

qu i t e  expensive f o r  a given cumputational accuracy. I n  addi t ion,  the 

absence of convenient approximate analytica 1 solut ions hampers the preliminary 

analysis of such t r a j ec to r i e s .  These problems supplied the primary motivation 

f o r  the present study. 

The approach employed i n  the present study belongs i n  the f i r s t  

category of analysis  described above, i.e., t ra jec tory  descriptions f o r  

specifietl  thrust  programs a re  sought. I n  Section 2 ,  ana ly t i ca l  solut ions 

for t h rus t  programs involving radial, normal, circumferential ,  and tangent ia l  

th rus t ing  are reviewed and extended. In  Section 3, a second-order perturba- 

t i o n  so lu t ion  i s  presented which permits thrust ing t o  occur z t  a r b i t r a r y  

constant angles with respect t o  the radius vector. 

are presented, and the appl icat ion of :he theory t o  t ransfers  between c i r c u l a r  

o r b i t s  and to  t r a j e c t o r i e s  involving multiple revolutions is discussed. 

Sample numerical r e s u l t s  

-2 - 



SECTION 2 

LOW-THRUST TRAJECTORIES 
SPECIAL CASES 

This sec t ion  contains approximate expressions which d i c t a t e  the  

motion of a vehicle under small constant r ad ia l ,  normal, tangent ia l ,  and 

circumferent ia l  t h rus t  accelerations.  The vehicle  under consideration is  

i n i t i a l l y  moving i n  a c i r cu la r  orb i t  in an  attractive inverse-square, 

c e n t r a l  force f i e l d .  

2.1 APPROXIMATE SOLUTION FOR LOW RADIAL TKRUST 

A p a r t i c l e  i s  moving i n  a c i r cu la r  Kepler o r b i t  when, a t  t i m e  

t = to, a constant r a d i a l  force (thrust)  is  added. 

i s  exact ly  described i n  terms of e l l i p t i c  i n t eg ra l s  of the f i r s t ,  second, 

and t h i r d  kinds. Copeland , with corrections by Karrenberg' and Au , has 
ca r r i ed  out the analysis  f o r  the four classes of motion: 

The resu l t ing  motion 

1 3 

1 
a < O ,  O<a< E, 

1 and a>- where a is the r a t i o  of t h rus t  accelerat ion t o  the  
1 a*  a - -  - a' 

i n i t i a l  g rav i ta t iona l  accelerat ion.  The value = - is  s ign i f i can t  because 

it corresponds t o  the minimum continuous th rus t  needed t o  escape. 
a 

The system has a n  energy in t eg ra l  and a momentum i n t e g r a l  which 

may be used to define the region of motion as a function o f a .  

the  motion i s  periodic when W z .  The region of motion and per iodic i ty  are 

reviewed i n  Section 2.1.1. 

I n  pa r t i cu la r ,  
1 

-3 - 



The in ten t ion  here i s  t o  derive an approximate ana ly t i ca l  descrip- 

t ion  of the  motion, not involving e l l i p t i c  i n t eg ra l s ,  when the thrust is 

numerically small, that is ,  when I U I  < < i. AS Levin points  out,  the 

exact so lu t ion  i n  terms of e l l i p t i c  i n t eg ra l s  are not  par t icu lar ly  convenient 

t o  use. 

4 

When the th rus t  i s  small, the departure from the  i n i t i a l  Kepler 
5 

using the method of va r i a t ion  of 

o r b i t  may a l s o  be expected t o  be small. 
6 of Kryloff and Bogoliuboff, and Citron 

parameters have determined the first order changes i n  the Kepler constants 

due to a small r a d i a l  t h rus t .  

i t s e l f  w a s  used as the zero order approximation i n  these studies .  

Lore l l  s t a r t  with an e l l i p t i c a l  K e p l e r  o r b i t  and determine the changes i n  
the constants over a complete revolution. 

c i r c u l a r  Kepler o r b i t  and determines the instantaneous changes i n  the constants 

Lass and Lore l l  using the method 

It is important t o  know t ha t  the Kepler o r b i t  

Lass and 

However, Citron starts with a 

Section 2.12shows that, with respect  t o  a c e r t a i n  pseudo-angle 4, 
t he  o r b i t  is an e l l i p s e  with eccent r ic i ty  I a I and mean motion (1-3 a) no. 

I n  real space the o r b i t  i s  quas i -e l l ip t ica l  s ince the aps ida l  angle is 

(1 +u) 7~ ra ther  than 7~ . 
2.1.1 REGIONS OF MOTION 

square force -c/r2 and a constant r ad ia l  force f .  

energies i n  plane polar coordinates are 

A p a r t i c l e  of un i t  mass is acted upon by an a t t r a c t i v e  inverse 

The k ine t ic  and po ten t i a l  

T = l  2 [ t 2 + r 2  h 2 ]  , 

respect ively.  

5um K is a constant. 

8 the momentum 

Since nei ther  T nor V depend e x p l i c i t l y  on the time t, their 

Also, s ince nei ther  T nor V are e x p l i c i t  functions of 

h = r 2 b  

-4- 



I 
I 
I 
I 

i s  a constant. The energy integralmay be expressed as 

4 Dividing by r 
the  so lu t ion  of the  Kepler problem, equation (2) becomes 

and using the transformation u = l/r, which is  famil iar  i n  

f 2 ( K +  C U + - )  - u . 2 
h2 U (3) 

I f  f w e r e  zero and i f  the p a r t i c l e  w e r e  moving i n  a c i r c u l a r  Kepler o r b i t  

u = u then 
0’ 

cu 
0 - - -  

EO 2 ’  
h 2 = - .  C 

U 
0 

A t  t i m e  t = t 

then 
a force f is added and a new energy constant K is  evaluated, 

0 

cu 

For these I n i t i a l  conditions equation (3) becomes 

2 [s] = - ( u o - u )  + -  2f[+] C 

2 Dividing by uo , t o  make equation (4) nondknensional, and se t t i ng  

f a =- U 
2 

x = -  
cu u ’  

0 
0 

-5 - 
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equation (4) becomes 

2 I = - (1 - A )  + 2  u 1 - l  (1 -X) ( 5 )  

Consider the roots  fo r  the equation 

When a = 0,  F ( X ) ,  is quadratic with two equal roots  = 1. When a#O, 

F (  A) ,  i s  cubic w i t h  one real root X = 1. 
e quat ion 

The other two roots  s a t i s f y  the 

X 2 - X + 2 a = 0  

which has the roots  

there  1 
8 For 

a r e  two equal roots  a t  X = - When a<- but not  equal t o  zero, these roots  

are real and unequal, and when 

F = F( X) , is sketched i n  Figure 1. For a< the  motion is  periodic with 

limits X = 1 and = [l + q G  1. The value a = corresponds t o  the 

minimum value f o r  t o  approach zero, which implies escape. 

I a I <<- the  roots  a r e  approximately 1 - 2 a and 2 a . Whena = - 8' 1 1 
2 '  8' 1 a>g, these roots arb  complex. The  function 

1 

2 8 

With h2 = c/uo and no2 = cuO3, equation (1) may be wr i t t en  as 

Clearly,  8 > O  means that is  a single-valued function of 8 over the in t e rva l  

-6 - o < e ( m .  



FIGURE 1. RADIAL THRUST FUNCTION F ( h )  



The energy i n t e g r a l  may be a l s o  wr i t ten  as 

E - f r = K  

where E is the instaneous energy of the  Kepler e l l i p s s  which the p a r t i c l e  

would follow i f  f w e r e  set equal t o  zero a t  any in s t an t  of time. 

of the i n i t i a l  conditions 

I n  terms 

E -1 - = 1 - 2 a X  ( 1 - X )  . 
EO 

(7) 

The instantaneous values fo r  the semi-major axis,a,and the eccent r ic i ty ,e  , 
fo r  t h e  Kepler o r b i t  are given by 

1 
2.1 .2 .AN APPROXIMATE SOLUTION WHEN I a1 < < 3 

Equation (5) i s  a f i r s t  in tegra l  of the  equation 

1 
8’ - -  where 7) = X - 1. For I a1 << - then - 2 a  < r) < 0 i n  which case 

LLL + (1 - 2 a )  r ) =  - a 
d e 2  

i s  an  excel lent  approximation t o  equation ( 8 ) .  Set t ing  

@ = (1 -a) e 
-8- 
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and dropping terms which contain a2 equation (9) becomes 

The so lu t ion  t o  equation (11) is 

and A and W are constants of integrat ion.  

For t h e  i n i t i a l  conditions q(0) = 0 and b(0)  = 0, then A = a 
and W = 0. W i t a  respect  t o  @, the  o r b i t  

A ( @ )  = 1 - a ( 1  - cos$)  (13) 

i s  an  e l l i p s e  with eccen t r i c i ty  a. However, with respect t o  8 the o r b i t  i s  

quas i - e l l i p t i ca l ,  that i s ,  t he  apsidal angle i s  (1 + a ) n rather t h a n r  . 
The o r b i t  geometry is sketched i n  Figure 2a f o r  a> 0 and i n  Figure 2b f o r  

a >  0. 
The t i m e  along the  o rb i t  i s  determined by subs t i t u t ing  equation (113) 

i n t o  equation (6) and making use of equation (10): 

=(l  - 3 a )  no ( I t  2 a c o s @ )  . 
The solut ion t o  equation (14) i s  

-9- 
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b) a < O  

8 

8 
8 FIGURE 2. RADIAL THRUST TRAJECTORIES 
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where t 

ignored,$ may be interpreted as e i ther  the ecce r t r i c  or the  t rue  anomaly. 

When U > O ,  @ is measured from the radius vector f o r  the near apse. 

v e r s e l y ,  when  a ( 0 ,  @ is  measured fran the  radius vector f o r  the f a r  apse.  

It is s ign i f i can t  that the mean motion (1 - 3 a )  ii0 predicteu i n  equatioil (15) 

i s  d i f f e ren t  than the mean motion n for the  i n i t i a l  Kepler o rb i t .  

i s  the  constan[. L J ~  integration. Siuce terms of order u2 have been 
0 

Con- 

0 

The subs t i t u t ion  of equation (13) i n t o  equation (7) y ie lds  

- =  E 1 - 2 a 2  (1 - cos @) (16) 
0 

E 

The instantaneous values for a and e for the  Kepler e l l i p s e  become: 

a 2 
a 1 + 2 a (1 - c o s @ )  , - =  

0 

The average value f o r  e during one cycle @ = 0 t o  2 v  is 

2n 2n 

(19) <e>  = I 4 2 ( 1  - c o s @ )  d$ = $ / b i n & d d )  = 4 la1 . 2 
0 0 

2n 

The expressions (18) and (19) are d i f f e ren t  than the corresponding expressions 

derived by Citron . The differeiice arises from the f a c t  t h a t  Citron t rea ted  

the s e m i - m a j o r  ax i s ,  a, as a constant w'ie.: he integrated t o  obtain the 

eccent r ic i ty ,  e. 

equation (17) .  

6 

However, a is a periodic fu-.ction of cb as can be seen from 

2.2 APPROXIMATE SOLUTION FOR L O W  NORMAL THRUST 
A p a r t i c l e  is moving in  an i n i t i a l l y  c i r c u l a r  Kepler o r b i t  when 

a constant force is  applied perpeniicular t o  the instantaneous ve loc i ty  

-11- 



vector  and i n  the plane of motion. 

under t h i s  normal force was  studied by Rodriguez who revealed the possi-  

b i l i t y  of reducing the normal case t o  quadratures. The complete so lu t ion  

is developed i n  the following pages for the e n t i r e  range of normal force. 

Since the applied force i s  perpendicular t o  the veloci ty ,  the energy is 

conserved. Consequertly, t he  s e m i - m a  jor ax i s  of the instantaneous Kepler 

e l l i p s e  (the path which would be traced by a par t ic le  i f  the normal force 

w e r e  removed) is equal t o  the radius of the i n i t i a l  c i r cu la r  o rb i t .  The 

p a r t i c l e  c a n  never move f a r the r  than twice the radius of the i n i t i a l  o r b i t  

from the  point of cen t r a l  a t t rac t ion .  

The r e su l t i ng  motion of the p a r t i c l e  
7 

The energy in t eg ra l  may be used t o  reduce the fourth-order system 

of equation, which describe the motion, by two orders.  A complete reduction 

to quadratures i s  possible whec the problem is formulated i n  plane polar  co- 

ordinates but ,  unl ike 

in tegra ls .  However, even without evaluating the quadratures, the t o t a l i t y  

of motions can be determined. The f i r s t  s t ep  i n  t h i s  d i rec t ion  is t o  determine 

the angular momeptum as  an expl ic i t  function of the distance from the point  

of c e n t r a l  a t t r ac t ion .  

2.2.1 REDUCTION TO QUADRATURES 

the  rzd ia l  casg  Lhe quadratures are not tabulated 

L e t  0 be the point  of cen t ra l  a t t r a c t i o n  and P be the  pa r t i c l e .  

The constant normal force per uni t  of mass f is pos i t ive  i n  the d i rec t ion  

shown i n  Figure 3. 

eous ve loc i ty  vector V is @. The u n i t  of mass is  se lec ted  so that the 

universa l  constant of gravi ta t ion is  unity. 

are given by 

The angle between the r a d i a l  d i rec t ion  and the instantan- 

The energy and angular momentum 

2 ’  h = r  8 

respectively.  E is constant but h is  not. Its time derivat ive i s  given by 

-12- 
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FIGURE 3. NORMAL THRUST G E W T R Y  
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. 
h = - f r  cos 9 = - f r  ?/V . 

Using the energy i n t e g r a l  t o  eliminate V, the d i f f e r e n t i a l  form 

i s  obtained. 

a Kepler e l l i p s e )  provides 

In tegra t ion  i n  the case whea E is negative (corresponding to 

\ 

where C is the  constant of integrat ion.  

The following ana lys i s  is based on the condition t h a t  the i n i t i a l  

Kepler o r b i t  is c i r c u l a r  w i t h  radius ro. 
given by 

E and the i n i t i a l  value of h are 

1 E = - -  
0 

2r ’ 
1/2 h = r  

0 0 

With the  nondimens iona 1 parameters 

r 
r ’  

p =  - 
0 

2 U = f r  
0 

the  constant of in tegra t ion  becomes 

c = K [ 1 - . ( 2 + - )  0 3n 4 I 
and 



The time quadrature 

dP 4- constant 
21-1'2 

7 = , , [ 2 p -  p 2 -(i -au) 

is analogous t o  the Kepler equation for  the Kepler problem. 

The d i f f e r e n t i a l  equation f o r  the o r b i t  

3 3 L 

21 p] =: [A] [ 2 P  - P  2 -0 -"a 
L 

is obtained from equation (21) by the operaticn 

dP d P d 7  
d e  d r d 0  
- = - -  

where 

2 -  
which follows from the de f in i t i on  h = r 8 .  

The o r b i t  equation i s  also reducible t o  quadrature: 

The quadrature equations (22)  and (25)  appear t o  be in t rac tab le .  

Nevertheless, a complete qua l i ta t ive  descr ipt ion of the motion can be obtained 

without carrying out the integration. 

2.2.2 REGIONS OF MOTION 

Frcnn equation (21), the  motion i s  imaginary i f  

2 2 2  
f ( p ) = - @ - 1 )  + 2 a U - a U  

is negative. A necessary (though not suf f ic ien t )  condition f o r  the  motion 

to be real is  that UU be posit ive.  An examination of the s ign  of U shows 

that, i f  the normal force is  directed i n i t i a l l y  outward (inward), the  tra- 

jectory w i l l  never move i n t e r i o r  (exterior) t o  the  i n i t i a l  c i r cu la r  o rb i t .  

-16 - 



The question arises whether o r  not f ( p )  vanishes a t  any other  

value p = a besides 1. 

a which s a t i s f y  the  equation f ( p  ) = 0 are 

Certainly a would depend o n a .  The two roots  f o r  

a ( p )  =+  U ( 2 p  - p 2 ) ' / 2 ]  

from which 

-1 

a(0) = [ 2 - 51 C - 2.809 

a(1)  = +, 00 

-1 

a ( 2 )  = [ 2 + y] = 0.230 

The values 

Figure 4. 

f o r  CG which s a t i s f y  equation (26) are shown as functions of p i n  

The so l id  curve i n  Figure 4 occurs when the  minus s ign is taken 

i n  equation ( 2 6 ) ,  while the  two dashed curves occur when the plus  s ign  is 

used. The value of p along these curves i s  denoted by a. For any given 

value of a the  function f ( p  ) i s  posi t ive and the  motion i s  real i n  t h e  

region between? = 1 and p = a .  

so labeled i n  Figure 4.  

Exterior regions a r e  inaccessible  and are 

It i s  s ign i f i can t  t h a t  a unique value a@) is  required t o  reach 

the  o r ig in  p = 0 and t h a t  a second unique value a ( 2 )  is  required t o  reach 

the  outer  l imi t  x = 2 .  

qua l i t a t ive ly  d i f f e ren t  i n  the  regions: a< a (0) , a (0) < a< 0 ,  0 < a< a (2), 

and a>a(2). 

2.2.3 .QUALITATIVE DESCRIPTION OF THE MOTION 

Indeed, i t  i s  log ica l  t o  expect the  motion t o  be 

Considerable informatlion can be obtained by examining equation ( 2 1 ) :  

-17 - 
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FIGURE 4. RECIONS OF MOTION 
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negative s i de  

- 19- 

X(9 ) has the  following propert ies :  

(1) It is  continuous. 

( 2 )  It i s  zero a t  P = 1 and P = a. The only 

exception occurs when a = 0. 

(3) It is  pos i t ive  i n  the  region betweerip = 1 

and p = a. 

( 4 )  dR/dp does riot vanish a t  p = 1 and p = a. 

Consequently, the t r a j ec to ry  p = p (7 ) has the following characteristics: 

(1) p ( 7 )  lies between p = 1 and p = a f o r  a l l  

values of 7. 

d p /dT  only vanishes a t  P = 1 and P = a. 

Emever, a t  a = 0 the d e r i ~ z t i . ~ ~ e  does not 

e x i s t .  

( 2 )  

(3) p ( 7 )  = p (- 7) when the  o r i g i n  7 = 0 is  

taken a t  p = 1 or  p = a. 

( 4 )  p ( 7 )  is per iodic  with period 2K, that is ,  

p ( 7 )  = p( 7 + 2 K ) .  

The t r a j e c t o r i e s  have the  forms shown i n  Figure 5 .  It remains t o  e s t a b l i s h  

the  forms for  the o r b i t s ,  p = p (  e ) .  
The d i r ec t ion  of motion along the  boundary P =  1 is d i r ec t .  I n  

f a c t  d e / d 7  = 1. 

es tab l i shed  from equation ( 2 4 )  which provides: 

The d i r ec t ion  of motion along the  boundary P = a can be 

d 8 / d T  > 0 fo r  a (0) < u < x ( 2 )  

d Q / d T  < 0 fo r  a < a(0) and U >%2) 

d e / d T  = 0 a t  a =  a ( 2 )  

df3/dT = +  as a approaches a ( 0 )  from t h e  

posi t ive s ide  
d Q / d T  = - m as U approaches a (0) from the  
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2.3 APPROXTMATF SOT;II"TON FOR M W  TANGENTIAL OR CIRCUMFERENTIAL THRUST 
USING TtlE ASYMPTOTIC METHOD 

Consider the motion of a p a r t i c l e ,  i n i t i a l l y  i n  a c i r c u l a r  Kepler 

o r b i t ,  with constant t h rus t  accelerat ion i n  either the tangent ia l  (along the 

ve loc i ty  vector) o r  circumferential  (perpendicular t o  the radius  vector 

and i n  the plane of motion) direct ions.  The r a t i o  a of the th rus t  accelera- 

tion to the  gravi ty  accelerat ion i n  the  i n i t i a l  o r b i t  i s  assumed t o  be 

s m a l l  compared t o  one. 

Practical i n t e r e s t  i n  these two problems s t e m s  from the  f a c t  that 

the optimum s teer ing  program, t o  achieve escape from a c i r c u l a r  o r b i t  i n  

minimum t i m e ,  is closely approximated by the  tangent ia l  and circumferent ia l  

s t e e r i n g  programs when a is small. Indeed, LawdenSY9 has shown t h a t  the  

optimum instantaneous th rus t  direct ion lies between the tangent ia l  and cir-  

cumferential  programs. 

The problem of ana ly t ica l ly  describing the  motion w i t h  e i t h e r  

tangent ia l  or circumferential  thrust  acce le ra t ion  is a l s o  of considerable 

mathematical i n t e r e s t .  

point  of cen t r a l  a t t r a c t i o n  occurs i n  a f i n i t e  t i m e .  The d i f f i c u l t y  i n  

solving t h i s  problem stems from the s ingu la r i ty  a t  the instant of escape. 

I n  general ,  i t  is necessary t o  t r e a t  one or  more of the var iab les  as being 

smll  i n  order t o  in tegra te  the equations. 

down I n  the v i c i n i t y  of escape. 

given i n  the following pages. 

It is known that the  condition f o r  escape from t h e  

The assumption usual ly  breaks 

A b r i e f  review of the pas t  approaches is 

An examination of equation (23) shows t h a t  d p  / d 8  vanishes a t  P = 0 and 

p = a except a t  a = 2 where  d p /d 8 does not exist. 

A complete p i c tu re  (Figure 6 )  of the o r b i t s  can now be formed. 
p is periodic i n  7 and 8 ,  however, the o r b i t s  thewelves  are not in general 

per iodic  s ince they  do not c lose.  

do e x i s t  are i so la ted .  

is  d i r e c t  or  rectrograde. For a = a ( 2 )  the  o r b i t s  have cusps a t  t he  outer 

boundary and f o r  a = a(0)  the  o rb i t s  pass through zero. 

Indeed, the only periodic o r b i t s  which 

The sign of d 8 / d T  determines w h e t h e r  the motion 

- 21 - 
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Tsien” i n  1953 obtained a crude approximation f o r  the circum- 

f e r e n t i a l  case by neglecting the second der iva t ive  of the r a d i a l  distance 

with respect  t o  time. 

i t s  i n i t i a l  value is  given by 

He found that the  r a t i o  P of the r a d i a l  distance t o  

where is  the t i m e  i n  un i t s  of the i n i t i a l  o rb i t  period. I n  addition, the 

r a t i o  z of the square of angular momentum t o  i t s  i n i t i a l  value is equal t o  

p i n  h i s  analysis.  Tsien a l s o  predicted the t i m e  t o  escape: 

114 1 - ( 2 a )  T =  
E a 

Benney” obtained i n  the tangent ia l  case a solut ion f o r  P and z 

i n  powers of a with the path length s (normalized on the circumference of 

the i n i t i a l  o rb i t )  a s  the independent parameter. 

obtained 

To the  f i r s + o r d e r  he 

p = 1 + 2 a  (s - s i n  s ) ,  = i +  2 a s .  

However, i n  Section 3 it i s  shown t h a t  t o  f i r s t -order  s = T i n  which case 

Benney’s solut ions are 

p =  1 +  2 ~ (  T - s i n T ) ,  2 = i +  2 a 7 .  

The escape time 

predicted by Benney is  only s l igh t ly  smaller thanTE predicted by Tsien f o r  

c ircumf eren t ia 1 thrus  t . 
- 23- 



Levin 4912 obtained a solution for the  circumferential  case i n  
powers of u. 
These solut ions are good approximations i n  the region U 7<<1. To extend 

t h i s  region closer to 1 higher order terms i n  Umust be retained,  which i s  

a weakness i n  t h i s  method. 

To f i r s t -o rde r  i n  U h i s  r e s u l t s  a r e  iden t i ca l  t o  Benney's. 

Bi l l ik13 hoped t o  extend the region of good approximation f a r the r  

from the origirlal  c i r c u l a r  o r b i t  i n  the circumferential  case. He used z - 1 

as a dependent var iable  and assumed i t  t o  remain small compared t o  1 over the 

range of interest. However, one need only examine T s i e i i ' s  so lu t ion  t o  see 
that z - 1 can be even grea te r  than 1 before escape is  achieved. 

5 
T-ass and Lore l l  used the asymptotic method due t o  Kryloff and 

Bogoliuboff to  obtain the d i f f e r e n t i a l  equations f o r  the f i r s t  approximation 

i n  the  circumferential  case. I f  one assumes t h a t  the eccen t r i c i ty  of the  

iastantaneous Kepler e l l i p s e  remains small, then rJhe equations obtained by- 

?Lass and Lorel l  provide 

where 8 i s  the polar angle. The advantage of the  asymptotic method, which 

was used here, over the  classical per turbat ion method invoked by both Benney 

and Levin is t h a t  an i n f i n k e  ser ies  i n  powers of a is  not required t o  obtain 

accuracy t o  order a over the en t i re  region (from c i r c u l a r  o r b i t  departure 

t o  escape). 
14 

Z e e  invest igated the problem of constant tangent ia l  t h rus t  (not constant 

t h rus t  acce le ra t ion) .  However, t h e  o r b i t  equation p = p ( 8  ) , z = z( 8 ) i s  

t h e  same for both cases; only the time along the  o r b i t  i s  d i f f e ren t .  

too,  used an asymptotic method to obtain the solut ions 
He,  

- 24- 



Observe that these r e s u l t s  are the same as obtained by Lass and Lore l l  

except f o r  t he  decaying s inusoidal  o sc i l l a t ion  i n  t h e  expression f o r  X. 

However, no consideration was given t o  the higher harmonics i n  8 . Since 

these terms can conceivably contribute addi t iona l  terms of order a 
ceding expressio2s f o r  p and z might be incomplete t o  order a . the pre- 

The following pages include the der ivat ions of the complete f i r s t -  

order so lu t ion  f o r  ,o and z i n  t e r n  of 8 f o r  both the  tangent ia l  and circum- 

f e r e n t i a l  cases. 

t o  order a has not been resolved, and fur ther  analysis  i s  required i n  t h i s  

However, the d i f f i c u l t y  of predict ing the t i m e  of escape 

area . 
2.3.1 EQZIIATIm OF MoTI(#J 

A p a r t i c l e  P is  moving i n  a c i r c u l a r  Kepler o r b i t  aborrt the point 

of central a t t r a c t i o n  0. A t  t i m e  t = 0 a constant t h rus t  acce le ra t ion  f is 

appl ied i n  e i t h e r  t he  tangent ia l  or circumferential  direct ion.  

of motion w i l l  be so formulatad t h a t  when f = 0 they a r e  l inear ized  and 

in tegrable .  

The equations 

The posi t ion of P is defined with raspect t o  0 by the  plane polar  

coordinates r and 8 (Figure 7). 
c i rcumferent ia l  t h rus t  f lies along re. 

inake the  gravi ty  constant unity. 

tun a r e  then given by 

For tangent ia l  t h r u s t  f lies along 6 and f o r  

Tne u n i t  of mass i s  se lec ted  t o  

The instantaneous energy and angular manen- 

2 .  h - r e  

respectively.  The t i m e  rates of change of E and h are 

h tangent ia 1 : = fg ,  h = f;- 

i = f -  b = f r  circumferential:  

S 

h 
r y  
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FIGURE 7 .  TANGENTIAL AND CIRCUMFERENTIAL THRUST GEOMETRY 

-1 To o b t a i n  the des ired forms we replace 1: by u 

the independeilt parameter. 

and treat 8 rather than t as 

Using the operator equation 

d 2 d  - (  ) = h u  - (  
d t  de  

we obtain 

du 
de 

v = -  

2 h2 2 2  2 h ( v  + u )  82 -: = + - =  
2 

2 d E  i=hu ;iB , hL 2 2 
2 E ( u , v , h )  = - (V +- u ) - U. 
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Thus-, 

t angent ia l  : f 
A 

dE f q v 2  + u2 
de  2 
- =  

dE f - = -  dh f 
- 0  - 
d e  u ’ d e  hu 3 c ircumf e ren t  ia 1: 

The next s t ep  i s  t o  perform the d i f f e ren t i a t ion  

and obtain the  o r b i t  equation fo r  the two cases. It is convenient a t  t h i s  

po in t  t o  introduce w = h . 2 The complete set of equations is  given below. 

tangent ia l :  
dv 1 - +  u = -  ’ de W 

du - -  

dw 2f - = -  d t  1 - -  ’ d e  
u2 4 T  

dv 1 fv - + u = - - - -  
d 0  

du 
d e  W 3 wu 

V Y  - =  circumferential: 

The i n i t i a l  conditions (at 8 = 0) for a c i r c u l a r  o r b i t  are 

v(0) = 0 ¶ w(0) = uo -1 
o y  

u(0) = u 

The equations fo r  u, v,and w are independent of t,and hence represent a 

complete third-order system. Dividing each equation by u and introducing 

the  nondimensional parameters : 
0 

- 27- 



U x = -  
0 

u '  
f U 3- 

2 
V 

0 
0 ,  

Y = r  , z = w u  
0 

0 

we have 

tangent ia 1 : 

dx 1 - =  dz Z.a Z ' Y  3 

circumferential: 

Wi th7  = u 3'2 t, the time equation can a l s o  be wr i t ten  i n  a nondimensional 

form 
0 

Then i f  one can obtain the solutions x o x (  6 )  and z = z ( 6  ) , r can be 

reduced t o  the quadrature 

+ constant r = /  d 6  

x 2 ( 6 )  

2.3.2 .FIRST APPROXIMATION 
When a = 0, equations (27) and (28) have solut ions of the form 

- 28- 



where P ,  and a r e  constants of integrat ion.  The method of Kryloff and 

Bogoliuboff l5 w i l l  now be applied to  obtain asymptotic solut ions t o  

equations (27) and (28) when a # 0 but i s  su f f i c i en t ly  small. 

regard  equation (30) as a set of transformation equations t o  the new variables  

P , a n d y .  

When a#O, 

(1) Tangential Acceleration 

I n  terms of the  new variables  equation (27) becomes 

3 dY 2 ay - =  
d e  

(1 -t , P Y c o s 0 ) 2 ~ ' l  t 2pycos  @ t p -y2 

where @ = 8 - ,& 
However, i f  the assumption i s  made that P Y < < 1  over the region of i n t e r e s t ,  

an asymptotic solut ion can be obtained. Later,  a ve r i f i ca t ion  w i l l  De given 

that fo r  a >Os the  quantity PY decays from an i n i t i a l  amplitude of order 

a t o  zero as the condition for  escape i s  approached. T h e  equations can, 

therefore ,  be wr i t ten  as, 

These equations are  in t r ac t ab le  i n  t h e i r  present form. 

The functions on the right-hand s ide  of equation (29) a r e  next 

represented by a trigonometric se r ies  with 

-29- 



8 
t 
I 
t 
8 
t 

1 
I 
8 
B 
I 
t 
I 
8 

I 
t 

Q) 

7 ('1 sin n @ )  + 1 (bn ('1 cos n @ + a n f l ( @ )  = (1-3 PY c o s @ )  cos @ = b 0 

I n= 1 

I n= 1 

00 

n= 1 

where 

0 0 

27r (33) 

(i) - 1 
a n I f i (  @) s i n  n $ d @  i = 1,2,3 

0 

Since a is small,p, and 'y w i l l  be slowly changing functions of 

8.  The f i r s t  a p p r o x h t i o n s  a r e  obtained by s e t t i n g  

w h e r e  

equations ( 3 3 ,  re ta in ing  only b (i) and holding them (F,p,T) constant 

Over the in te rva l  $ = 0 t o  2 n. The d i f f e r e n t i a l  equations fo r  the f i r s t  

approximation a r e  

and r a r e  determined by neglecting the higher harmonics i n  

0 

- + L E  dh (1 - 3 c('ycos$) s i n a d $  = 0 
d @  j I 7 l  

0 

2 2n 

(35) i 
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where # = 8 - s. The last equation has the  so lu t ion  

(3 6 )  
- -1/2 Y = (1 - 4 a 8 )  

Combining the f i r s t  and last equations i n  (35) and integrat ing one gets  

where K i s  the constant of integration. 

(2) Circumferential Acceleration 

Solutions s i m i l a r  t o  equations (36) and (37) can be obtained 

for the  circumferential  case. The d i f f e r e n t i a l  equations 

are obtained by subs t i tu t ing  equation (30) i n t o  equation (28) and by dropping 
2 terms of order (ay) . The th i rd  equation i n  (38) i s  the  same as i n  the 

tangent ia l  case. 

A5 before, the  right-hand s ides  are represented by trigonometric 

series of the form i n  equation (31) except that g,(#) replaces fl(#) and 

g2 (0) replaces f,(#) . For the f i r s t  approximation 

- a = *Lm(l - 3 I-(? cos#) d $  = 2fY -3 
d Q  

-31- 
I 



I 
I 
I 
I 
I 
1 
8 
1 

8 
t 
I 
8 
8 

a 

from which 

-112 - 
Y = (1 - 4 a e )  

- -714 - 
P = K Y  

2.3.3 FIBST APPROXIMATION 
I n  ob ta in ingp  and 7 as functions of 8 the higher harmonics were 

ignored i n  the series equations (32). The f i r s t -o rde r  e f f e c t  of these terms 

may be determined from the improved solut ions (improved over equations ( 3 4 ) )  

n= 1 

W 

-3 $ (bn(3) s i n  n @ - an (3) cos n 9) - 
y = y-t 2 a y  

n= 1 

(i) - 
n where s e t t i n g  p = = p  and Y = Y i n  t he  coef f ic ien ts  b (i) and a n 

(1) TanPential Acceleration 

I n  t h i s  case 

8 
8 
n 
8 
8 

b n = $/om(l - 3 E c o s  8 )  cos @ cos n @ d @  

- 
others  = 0 (1) =: - - 3 P Y  , = 1 b 

bl n 2 

a (1 - 3 I-c'y cos @) cos @ sin n @ d @ = 0 n 
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8 
I 
I 
I 
8 
II 
8 
1 
I 
I 
I 
8 
8 
I 
8 
8 
8 
8 
8 

27r 
(3) = $ Jo (1 - 3 =cos $) cos n $ d @  b n 

- 
(3) zz - 3py , others  = 0 bl 

a (3) = ' 7T [2n(1 - 3 c(Tycos@) s i n  n $  d $  = 0 n 
JO 

and equations(42) become 

- - 
3 P y  cos 2 $ )  Y p = g  + 2 a (- COS d t. - a 4 

- 
Y =  Y (1 - 6 a Z  s i n $ >  

When equations (43) and (37) are subst i tuted i n t o  the equation f o r  x i n  

(30), and when terms of order a 2 are dropped, t he  equation f o r  x becomes 

I cos ( 8  -B) ' .=[l+x 1 K 

Y Y (44) 

Using the r e l a t i o n  

then the  der iva t ive  of equation (44) with respect t o  8 is 
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8 
I 
8 
I 
8 
8 
I 
I 
8 
8 
I 
I 
8 
I 
I 
8 
I 
8 

s i n  ( e  -PI. -112 2 P 7 -  6 P K Y  cos ( 8  -p) - ax 
d e  7 3/2 - =  - 

The constants K and a r e  determined from the i n i t i a l  conditions 

- dx 
d e  x = l  , - = O  , Y = 1  a t e - 0  

Finding K = 2 a  and /3 i n  7 ~ 1 2 ,  equation (44) becomes 

s i n e )  1 

Y 
x = = ( l + - - -  -112 

Y 
The f i n a l  r e s u l t s  a r e  then 

(45) 

which i s  the same as obtained by Zee”. However, the present analysis  has 

confirmed that the higher harmonics do generate f i r s t  o r d e r  terms i n  a but 

that these terms cancel. 

This ana lys i s  was based on 

correctness  may be seen from 

the assumption that py<< 1. The 

4 (47) 

which is << 1 for  a<< 1 and which tends t o  zero as 8 approaches - fo r  

pos i t ive  values of a. 
4a 

(2) Circumferential Acceleration 

In  place of equations i n  (43), the improved solut ions for  

t he  circumferential  case becane: 
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8 
I 
8 
1 
1 
I 
I 
8 
8 
8 
1 
8 
8 
I 
I 
8 
1 
8 
8 

Y = - 6 aE3 s i n @ )  

where 9 = 8 -8 .  The resu l t ing  f i r s t -order  so lu t ion  is found t o  be 

(4 9)  

This solut ion d i f f e r s  from equation i n  (46) f o r  the  tangent ia l  case only i n  

the  decaying sinusoidal o sc i l l a t ion  of order a i n  x. Hence, the difference 

i n  tangent ia l  and circumferential  thrust  is small f o r  smalla. 

In t h i s  case the s t ipu la t ion  t h a t  p y < < 1  i s  confirmed by 

2 . 3 . 4  TIMP WUATIOR 
Having determined x and z as functions of 8 , fo r  the  tangent ia l  

and circumferential  cases, it is possible t o  in tegra te  the  time expression, 

equation (29), by elementary functions. For convenience, equation (29) is  

rewr i t ten  a s  

When the t i m e  expression i s  evaluated fo r  the  tangent ia l  case, using the 

equations i n  (46), the resu l t ing  in tegra l  becomes 

t- constant 
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Upon in tegra t ing  t h i s  expression and evaluating the constant of in tegra t ion  

with the i n i t i a l  conditions = 0, 8 - 0, the complete f i r s t -order  solut ion 

becomes 

When t h e  t i m e  expression i s  evaluated fo r  the  circumferential  case, 

using the equation i n  ( 4 9 ) ,  the resul t ing in tegra l  becomes 

T =  J (1-4u e) -3/4d6' - 4CCJsin e (1-4u8) -3'8 d e + l 2  u2Jsin26 de 

t. constant.  

Upon integrat ing t h i s  expression and evaluating the constant of integrat ion 

with the i n i t i a l  conditions T =  0, e =  0, the complete f i r s t -order  solut ion 

becomes 

Equations (52) and (53) show that, t o  the first order, the time expressions 

f o r  the  tangent ia l  and circumferential cases a r e  the  same. 

order theory were car r ied  out,  the second-order pa r t  of equations (52) and 
(53) would be d i f f e ren t  . 

I f  a second- 
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SECTION 3 

PERTURBATION SOLUTIONS 
OF THE EQUATIONS OF MOTION 

The in t en t  of t h i s  investigation has been to improve the  ana- 

l y t i c a l  representat ion of low-thrust t r a j e c t o r i e s  through per turbat ion 

so lu t ions  t o  t h e  system equations of motion. 

appl ica t ion  of t he  per turbat ion solutions t o  o r b i t  t r ans fe r  problem. 

making use of these solut ions,  ce r t a in  optimization problems of interest 

may be  t r ea t ed  within the realm of simple optimization theory 

O f  primary i n t e r e s t  is  the 

By 

and improved 

numerical computation techniques can be developed. 

3.1 PERTURBATION SOLUTIONS STARTING FROM A CIRCULAR ORBIT 

This subsection summarizes the per turbat ion theory, which includes 

a complete second-order theory f o r  the motion of a vehic le  where the  t h r u s t  

vector is maintained a t  a constant angle with respect t o  the radius vector.  

The following pages w i l l  include the system equations, a f i r s t -o rde r  so lu t ion  

f o r  tangent ia l  th rus t ing  i n  order t o  i l l u s t r a t e  t he  bas ic  methodology, and 

then a second-order theory development f o r  t h r u s t  i n  an a r b i t r a r y  direct ion.  

A port ion of t h i s  subsection w i l l  be devoted t o  discussing the numerical r e s u l t s  

f o r  representat ive low-thrust t ra jector ies ,and a l s o  t h e  appl ica t ion  of t h e  

theory t o  o r b i t  t r ans fe r  problems using an energy/mmentum approach. 
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3.1.1 EQUATIONS OF MOTION 
Consider the problem of finding perturbation solutions of the differ- 

ential  equations of motion of a vehicle moving under low thrust. 

of motion are 

The equations 

= a cos ?j 
1 2 2 

d p - -  + - -  
P P 2  2 d T  

(54) 

( 5 5 )  

de O<a<( l ,and where 'v = p dT , 
(bee Figure 8) .  

4 The notation is  that of E .  Levin 

p ,  8 , r are dimensionless position and t h e  variables 

Thrust //i 

FIGURE 8 .  GENERAL LOW-THRUST GEOMETRY 
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The constants  of in tegra t ion  a r e  determined according t o  the i n i t i a l  condi- 

t i ons ,  p = 1, fi = 0, T = 0 ,6  
a c i r c u l a r  o r b i t .  

3.1.2 THRUST ZN ZANGENTU 

Consider the case of 

t h e  equations of motion, (54) 

= 1, e = 0, and s = 0, f o r  the  departure from 

DZRECTUXI 

tangent ia l  accelerat ion:  t a n  @ = - . Then 
lJ 

and ( 5 5 ) ,  become i) 

n n 

- U L  1 
i - -  

dLP - - -  
d T 2  P p 2  q- 
1 d  au 
p ( P l J ’ )  = 

(56)  

(57) 

2 2 d e  With (ds)2 = (d p ) 

t h e  ve loc i ty  becomes 

+ P (d 8 )2 ,  the dimensionless arc length, and lJ = p - d r  ’ 

2 ds d P  

4 From Levin , t he  r a t e  of change of the instantaneous energy E is 

For the tangent ia l  case, equation (59) becomes 

N o w ,  changing t o  the independent var iable ,  s ,  we obta in  

v - =  a av 
ds 

(5 9) 
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Expressing equation (61) i n  terms of the speed V f o r  a n  i n i t i a l l y  c i r c u l a r  

o r b i t ,  the f i r s t  i n t e g r a l  obtained by Benney" is 

ds 2 2  v 2 =  \$ = - - C  2 a s  - 1, 
P 

Thus equation (57) can be wr i t t en  as 

In tegra t ing  equation ( 6 3 ) ,  t he  angular momeatum becomes 

2 
With the  approximation ex= 1 + x + - , f o r  slnall x, equation (64)  reduces 2 
t o  

X 

u 2  2 h = pu = l+ag ( s )  + - g (6) , 2 

ds  
where g\s) = I, . 

--f 2as-1 P 

Similar ly ,  equation (56 )  can be w r i t t e n  as 

-40 - 



t 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

The following w i l l  show that equations (56) and (57)  can be brought i n to  the  

f o m  

1 1 where u = . Set t ing  P = - i n  equation (64) yields  
U 

1 which is equation ( 6 8 ) .  Set t ing  F = ; i n  eqaation (56) yields 

Subst i tut ing these derivat ives  in to  equation (66) the r e s u l t  is 

For the  tangent ia l  case, the  following analysis  w i l l  ver i fy  that the quantity 

ins ide  the bracket i s  zero. From equations (68), (69), and (62), it follows 

t h a t  
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e 

Also dP/ds can be 

From equation (57) 

wri t ten  a s  

2 - = - - = -  de u2 dh h u 
dr a dT 4 

i t ? = - - - -  1 du d e  
ds u2 de ds * 

dP h du 
ds - 5 3  so that - =  

Thus the quantity inside the bracket i n  equation (70) i s  zero, substant ia t ing 

equation ( 6 7 ) .  Regarding the r igh t  s ide  of equation (67) as a function of 8 ,  
the  equation is  now a nonhomogeneous linear d i f f e r e n t i a l  equation with 

constant coeff ic ients .  

parameters i n  the form 

The complete solut ion i s  obtainable by var ia t ion  of 

u = A cos 8 + B s i n @ -  

ds 
2ut-2a s-1 where i =G, A and B a r e  a rb i t ra ry  constants and g(s) = 

Integrat ing equation (71) by par t s ,  the  r e s u l t  i s  

u = A cos 6 + B s i n 8  + exp 

f o r  a f i r s t -o rde r  solution. 

i n t eg ra l ,  d i f f e ren t i a t e  

To obtain a more e x p l i c i t  form for  the pa r t i cu la r  

with respect t o  s t o  obtain 

-42 - 
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which can 

which has 

ds 1; -2au 

du -2 a 
ds ~UI-2as-1 - 2 a s 2 ~ 2  as-1 2 ~ t 2 a s - l  
- =  (74) 

be arranged as 

(75) 
1 1 
2 a  a u de + s du = - du - - u du = d(us) 

2 

2a 2 a  
u u  + cl, o r  s ince u = 1 when s = 0, the so lu t ion  (us) = - - - 

u = 1-2as. (76) 
Using equation (76) i n  equation (68) and knowing t h a t  

2 
d e  = q u 2  -1 ( ) d s ,  the  r e s u l t  is 8 = s + o(a 2 ds 

U 

and evaluating the  constants of integrat ion i n  equation (72) according t o  

t h e  i n i t i a l  conditions, the constants are A = 0 and B = 2 a ,  so that 

equation (72) becomes 

2 u = 1 - 2 a ( s  - s i n  s) + O(a ) . 

1 S i n c e  p = ;, equation (77) i s  i n  agreement with Benney's r e s u l t ,  

2 p =  1 +  2 a ( s  - s i n  S) + 0 ( a  ) . 
2 Now wri t ing  equation (68)  and neglecting terms of o r d e r a  , 

2 
dT = [ 1 - 2 a  (s - s i n  s) (1 -as) de + O(a ) 

-43- 
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2 
Using d e  = ( 1  d s ,  we ge t  

U 

2 d e  = [l  - 2 U ( s  - s i n  s)] d s +  O(U ) 

Equation ( 7 9 )  can now be integrated to obtain 

7 - C  = I [ l + a ( 3 8  - 4 s i n s ) ]  [I - 2 a ( s  - s i n  s ) ]  d s +  o(a 2 

(81) 
2 2 

= s + a ( 7 +  S 2 cos 5) + O(a ) . 

When T =  0, s = 0 so that C = - 2 U  and equation (81) can be wri t ten  as 

2 s  
2 2 

2 
S 

T =  s +a(- - 4 s i n  -1 + o(u2> . 

Equations (78) and (82) cons t i tu te  a ccnnplete f i r s t -order  so lu t ion  of 

equations (67) and (68) i n  the case of tangent ia l  accelerat ion.  Analogously, 

a second-order solut ion can be derived. 

3.1.3 THRUST I N  ARBITRARY DIRECTION 
Now consider the more general case of th rus t ing  with a constant 

o r i en ta t ion  angle $. 
(54) and (55). Writing equation (59) i n  a d i f f e ren t  form, we have 

The equations of motion a r e  of the form of equations 

or 
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t o  s a t i s f y  i n i t i a l  cond i t ions ,p=  1, s = O , T =  0, then 1 
Choosiilg C = - - 2 
equation (84) becomes the f i r s t  in tegra l  

2 
P 

v2 = g2 = - +  2af(s )  - 1 

I n  the s a m e  way that equation (64) w a s  obtained, the angular momentum 

becomes 

Equation (70) w i l l  now become 

dh du g c o s &  1 - 
2 I -  + u = - - -  - -+  

de2 

2 d u  
h2 h ' I  d e d e  h u  ~ 

dh a s i n 9  7 / 7 2  
Since h = -- 2 dT d e a n d z =  uv (8 + P  a 

U 

equation (87) becomes 

Hence, equations (88) and (86) can be wr i t t en  as 
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The complete so lu t ion  of equation (89) is obtainable by var ia t ion  of parameters, 

analogously t o  equation (71), as  

u = A c o s Q +  B s i n  8 -  eieIe-ie F , ( e )  d e +  + e-ieleie F , ( e )  d e  (91) 
2 

where 

2 
Using the approximation ex= 1 + x + - f o r  small x,  a f i r s t -order  expression 2 
f o r  equation (91) becomes 

X 

ds 2 
where F2(  e )  = 1 - 2 a , u e  de - V gcosq-+ d e  ) . VV de  

Upon integrat ing equation (92) and evaluating the constants of integrat ion,  

A and B, according t o  the i n i t i a l  conditions e =  0, u = 1, - du = 0, and 

l e t t i n g  
de 

= q0, a constant,  the resu l t  i s  
1 
1 

2 u = 1 - a [ 2 sin ~ l / ~  ( 8 -  s i n  e )  + cos qo (1 - c o s e )  ] + O ( a  1 (93) I 
8 
t. 
8 
L 
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2 p = 1 + a [ 2  s i n @  ( e -  s i n e )  + COS $o (1 -  COS^) 3 + o ( a  1. (94) 
0 

Using equation (90) it follows that 

2 Since (ds)2 = ( d P ) 2  + p2 (de) ' ,  then ds = P d e  + O(U ) so t h a t  by 

equation (94)  

s = e + a [ s i n q 0  ( e  2 + 2 c o s € ~ - 2 ) + c o s @ ~  ( @ - s i n 8 ) ] + O ( a )  2 . (96)  

In  general ,  the  basic  so lu t ion  to equations (54) and (55) can be wri t ten i n  

any of the  two e x p l i c i t  forms. 

In  the previous pages i t  has been shown that equations (94) and (95)  take 

the form of (97). From equations (94) and (95) the form of (98) is obtained, 

W l Y ,  

and 

Other r e l a t ions  involving s are  
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2 2 e = s - a [ s i n  q 0 ( s  + 2 cos s - 2) -I- cos q 0 ( s  - s i n  s) 1 + O ( U  1, (101) 

7 = s + a[sin qo ($ s2 -€ 2 cos s - 2) I. cos q o ( s  - s i n  s) 1 +- o ( U  2 ). (103) 

The development of second-order expressions i n  the two e x p l i c i t  forms as 

noted by (97) and (98) w i l l  now be obtained. Frorn earlier f i r s t -o rde r  r e s u l t s  

t h e  following expressions are obtained: 

2 = v -t O(a ). 

Upon subs t i t u t ing  these expressions i n t o  equation (91) and in tegra t ing  and 

evaluating the constants  of integrat ion,  A and B, according t o  the i n i t i a l  

conditions, the  following i s  obtained: 

u = 1 +a[ C O S ~ ~ ( C O S  e - 1) - 2 s i n q o (  e -  s i n  e )  ] 

2 + a [.si&.@ (- 2 e2  - 7 8 s i n  -9 - 18 COS 8 t- 18) 
I' 

11 27 3 
0 2 2 
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3 Since (1 + ax f a 2 y ) - l  = 1 - u x +  a 2 ( x 2  - y) + 9 ( a  ) equatioa (104) can 

be written as 

2 2 2 2 
i a [ s i n  1JI (6 8 .t 4 s i n  8 - 8  s i n 8  +. 18 COS 8 - 18) 

0 

2 
-F cos q (cos2 e - esin e - r, cos e f- 3) 

0 

Upon substi tutingequation (100) in to  equation (105) p i s  obtained i n  terms of 

T , namely, 

2 + a [ s in2  1J/ (3 T2 + 3 2 cos T .t 5 cos 7 -t 6 cos T + 2 s i n  7 -  11) 
0 

s i n  7 + s i n  q c o s $  ( 8 7  4- - 7  COST - - 7 s in  7 - - 
0 0 2 2 2 

11 3 2  

We o b t a i n 7  in terms of 6 from equation (90) 

(107) 3 2  
7 = e + a [ 2  COS qo( e - s i n e )  + s i n  qo (F e t 4 COS e - $1 1 

2 7 3  + a 2  [ s i n  J/ (5 e + 24 s in  e + 6 e cos e - 6 s i n  ecos e - 2 4  e )  
0 

2 3 17  + COS q0(2  6cos 8 + 12 s i n  0 + 2 s i n  @cos 8 + - 6 )  2 

23 2 2 3 + sir. ?I/ COS q (- 9 + 37 cos e + e s i n  e - 6 “0s e - 31)l +(a 1. 
0 0 2  
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Froin equation (107) and using equation (loo), 8 is obtained i n  terms of 7 

2 2 3 
-F a [ s i n  qo( 9 - 8 s i n  + 6 cos - 6 7' s i n  - 10 s i n T c o s  7 

2 5 9 + 127) f- cos q0(8 s in  7 - 6 7 cos 7 i - s i n  T cos 7 - 2 7) 2 

2 -F s i n  qo cos $' (- T2 - 21 cos 7 - 157  s i n 7  - 10 cos T 0 2  

2 3 - 3 7 c 0 S T - f -  31) t- o ( U  ) 

There i s  now enough information available t o  obtairi energy and momentum 

expressions. Using equation (84), ( 8 5 ) ,  and ! 8 6 ) ,  the  energy and momentum 

expressions become 

(109) 
1 
2 E = - - +  UTsin?,!'o 

+ a2 [ s i n  2 qo(- +r2 - cos  T +  1) + s i n  JI, cos q o ( ~ -  s i n  

3 -f- 8 s i n  cos 7 )  - cos 7 +'1 1 +- O(U ) 

(110) 2 2 2 h =  l + a r ~ s i n $  + a [sin q 0 ( 7  + 2 C O S T  - 2) 
0 

-t s i n  dl0 cos q0( T - s in71  J t- ~ ( a  3> 

Using the  energy and momentum equations, the following expression is derived 

f o r  the eccent r ic i ty  of the instantaneous Kepler e l l i p se :  

e* = 1 + 2E h2 

2 2 2 e = U [ 6 s i n  qo(l - cos 7 )  + 16 s i n  qo cos qo s i n  Tcos 

-t 2(1 - C O S T )  1 -t O(U 3 ) 
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The previously developed equations cons t i tu te  second-order solut ions t o  

equations (54) and (55) f o r  O <  a< < 1, q0  a constant,  and 8 ,  7 ,  and s not 

too large.  

3.1.4 NUMERICAL RESULTS 

Figure 9 shows representative low-thrust t r a j e c t o r i e s  produced by 

the second-order perturbation theory, with a constant t h rus t  accelerat ion 

of a =  0.01 f o r  four spec i f i c  th rus t  angles. 

a r e  shown, and the values of the dimensionless time parameter7 are indicated. 

The r a d i a l  thrust ing case, q0 = Oo, i s  seen t o  exhib i t  the osc i l l a to ry  

behavior described i n  Section 2.1. Also, the apsidal  angle i s  seen t o  be 

approximately ( 1 + a) n, which i s  a l so  apparent from our numerical r e su l t s .  

The circumferential  thrust ing case,  1(/ = 90°, is seen t o  exhib i t  the secular  

increase i n  radius a s  predicted i n  Section 2.3. 

The four th rus t  angle values 

0 

However, the secular  increase 

shown i n  Figure 9 i s  s l i g h t l y  modified by the second-order terms. 

The accuracy of the perturbation solutions f o r  a r b i t r a r y  s teer ing  

angles cannot be determined from the numerical r e s u l t s  shown i n  Figure 9. 

Since there a r e  no exact solut ions for  a r b i t r a r y  s teer ing  angles,  we must 

take a c loser  look a t  the underlying assumption upon which our per turbat ion 

theory is  based. 

on a, the  binomial, exponential, and trigonometric s e r i e s  may be used f o r  

convenience i n  the derivation of the perturbation solutions.  When U i s  

s u f f i c i e n t l y  small, these i n f i n i t e  s e r i e s  converge rather quickly. Therefore, 

s ince  our perturbation solutions are  only i n f i n i t e  series developed through 

the  second order, the accuracy w i l l  increase as a becanes smaller. This 

assumption d i r ec t ly  l imi t s  t he  s i z e  of the independent var iab le ,  either 

T or 8, for reasonable accuracy. In  general, a sU  approaches zero, the 

independent var iab le  can be made larger.  

The assumption i s  t h a t  0 < a <  (1. With t h i s  assumption 

0 The exact solut ion fo r  the spec ia l  case whenqo = 0 is known i n  

terms of e l l i p t i c  in tegra ls ,  as noted i n  Section 2.1. 

in tegra ls  w e r e  evaluated and compared with the perturbation theory r e s u l t s ,  

it w a s  found a t  a given value of p a t  7 = 7r and U = 0.01, the  e r r o r  w a s  l e s s  

than 1% in- r .  However, fo r  a (0.001, the e r r o r  should be s ign i f i can t ly  less, 

When the e l l i p t i c  
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and the per turbat ion solut ions would probably give accurate  r e s u l t s  f o r  one 

revolut ion or more. 

revolut ion t r j a e c t o r i e s  is  given in  Section 3.2.2. 
3.1.5 ORBIT TRANSFER APPLICATION 

A procedure for improving the accuracy of mult iple  

The per turbat ion theory may be appl ied almost d i r ec t ly  to the  problem 

of t r ans fe r  from one c i r c u l a r  orb i t  t o  another. 

i n i t i a l  th rus t ing  phase on departure from a c i r c u l a r  o r b i t  followed by a 

coast ing phase and a subsequent thrust ing phase t o  e s t a b l i s h  the f i n a l  cir- 

c u l a r  o r b i t ,  i t  is only necessary t o  choose the  thrus t ing  angles and th rus t  

durations so t h a t  t he  energy and momentum values a t  t-he beginning and end 

of the coast ing p'hase are ident ical .  

For t r ans fe r s  involving an 

Figure 10 i l l u s t r a t e s  a sample t ransfer .  

FIGURE 3.). ORBIT TRANSFER GEOMETRY 
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The f i n a l  boundary condition of the second thrust ing phase may be satisfied 

by in te rpre t ing  it as an  i n i t i a l  condition and then considering t h e  motion 

i n  negative t i m e .  

with regard t o  the in i t i a l  o rb i t ,  it is  necessary t o  examine the conversion 

f ac to r s  between quant i t ies  measured i n  the  p 

system. 

conversion fac tors  are: 

Because the  various equations were non-dimensionalized 

= 1 system and the pf = 1 i 

, the  Denoting the pf quant i t ies  by primes, and defining K = - Pf 
p i  

(Pi = 1 quantity) x conv. fac tor  = (pf = 1 quantity) 

e 

K E '  

K-1/2 h' 

K3/2 7' 

3 K' a' 

K-l 
K3 /2 

$(length) 

8 '  

K1/2 i' 

When these conversion fac tors  a r e  u t i l i zed ,  the non-dimensional equations a r e  

s u f f i c i e n t  t o  define the t ransfer  maneuver. 
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3.2 SOME GENERALIZATIONS OF THE PERTURBATION THEORY 

3.2.1 EXTENSION TO ELLTPTICAL ORBIT STARTING CONDITIONS 

Since the development of the perturbation theory i s  complete through 

second-order fo r  c i r c u l a r  o rb i t  s t a r t i ng  conditions, i t  is qui te  na tura l  t o  

extend the  theory t o  accept e l l i p t i c a l  o rb i t  s t a r t i n g  conditions. To 

accomplish t h i s  without recourse t o  numerical methcds o r  a completely 

d i f f e ren t  ana ly t i ca l  approach, the following assumptioxswere made with 

regard t o  the s t a r t i n g  conditions: 

ru.=as canditioas iasrrre tba t  the stirtihg o r b i t  has an eccen t r i c i ty  

The above i n i t i a l  conditions, along with 8 = eo = 0 no 

and 7 = 7 = 0, can be used tore-waluate  the constants of in tegra t ion  re- 

quired i n  the perturbation analysis.  

ana lys i s  t o  that of the preceding subsection, and t o  avoid undue algebraic  

complexity, only the  f i r s t -o rde r  r e su l t  has been derived. The f i r s t -order  

results are a s  follows: 

larger  than order U. 

0 

In  v i e w  of the s h i l a r i t y  of t h i s  

p =  1 i- Ap (4-3 cos 7 )  i 2 A 6  (1-cos T )  + s i n  T (112) 
2 0 

+ a[ 2 s i n q o  (T - s in- r )  + cos @ 0 (I-COST)] + O(U ) 

8 =  T -  6 A p ( T - s i n T )  - A e ( 3 T  -4 s i n T )  - 2 p 0  (1-COST) (113) 

- a[ s i n q 0  % T 2 +  4 C O S T  -4) -t 2 cos q0 (e  - s i n e )  I+ ~ ( u  2 

(114) 
1 2 

E = -:+ 2 A p  + A d +  a?- s i n @  0 + O(u ) 

By equation (113), T = 8 4- O( a), which implies t h a t  equations (112) , (114), 

and (115) can be wr i t ten  i n  terms of 8 by j u s t  subs t i tu t ing  8 f o r T .  
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3.2.2 *TRAJECTORIES INV(JLVING MULTIPLE REVOLUTIONS . 
In  a so-called strong gravi ta t iona l  f i e l d  ( thrus t  accelerat ion 

extremely small compared t o  gravi ta t ional  acceleration) t r a j e c t o r i e s  of 

i n t e r e s t  may involve several  revolutions about the cen t r a l  body. Direct 

appl ica t ion  of the perturbation theory of subsection 3.1 would r e s u l t  i n  

s ign i f i can t  e r ro r  accumulation for  such long t ransfer  times, 

approach would be to  re-establ ish the c i r cu la r  reference o r b i t  a t  each 

revolution. This technique,having an  analog i n  the r e c t i f i c a t i o n  process 

i n  the Encke method of spec ia l  perturbation thcary, should sharply reduce 

the  overa l l  e r ro r  accumulation. 

choosing the time of r ec t i f i ca t ion ,  the f i r s t -order  extension t o  e l l i p t i c a l  

o r b i t  s t a r t i n g  conditions provides the hformation necessary fo r  perfomdng 

a r e c t i f i c a t i o n  which i s  consistent t o  the second-order. Different ia t ing 

equations (112) and (113) gives 

A more sensible  

It w i l l  be shown t h a t  by appropriately 

6 = 1 - 6A p (1-cos T )  - A b(3-4 cos T )  -t 2 io s i n T  (117) 
2 - U [ s i n  ?,bo (37 -4 s i n T )  4- 2 COS q0 (l-cOsT ) ]+ 0 (U ). 

Assume that the i n i t i a l  s t a r t i n g  conditions a r e  such that A p ,  A 6 , and 

a r e  of order OL or  smaller. Next consider equations (116) and (117) f o r  

r = 2 n :  

0 2 

B ( 2 n )  = 0 4- 0(a2) , 
B ( 2 n )  = 1 - a 6 n s i n ? , b o +  O ( U 2 )  . 

From equation (112) 
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Next compare (2 n) with the  c i rcu lar  o r b i t  value hCO f o r  P = P(2 n) 

6 = 1 - a6 n s i n q  0 + O(a2) (12 1) co 

From equations (118), (119), and (120) it i s  seen t h a t  conditions a t  7 = Zn 
are those of a c i r c u l a r  o r b i t  t o  order a. Since the  deviations from a c i r c u l a r  

o r b i t  condition are of order a , equations (112), (1131, (114) and (115), along 

wi th  the terms of orders' from subsection 3.1, are s u f f i c i e n t  f o r  the multiple 

revolu t ion  case. Higher order terms i n  A 6 and io are not required i f  t h e  

r e c t i f i c a t i o n  occurs a t  7 = 2n, since t he  coe f f i c i en t s  of these terms are 

already of order a . 

2 

2 

A s t ep  by s t ep  description of a multiple revolution t r a j ec to ry  

computation follows : 

(1) Using equations (112) , (113) , (114) and (115) with second-order 

terms included, compute the  time his tor ies  t o  7 = 2 7 ~ .  

and I;) must i n i t i a l l y  be of order GI . 
Remember that Ap, e o ,  

2 
0 

(2) Using the conversion f ac to r s  contained i n  3.1.5, convert the 

quan t i t i e s  t o  a system with a reference o r b i t  of radius  ,9 = P ( 2 n ) .  That is, 

.' 
e (0) 7, p (Zn), r;) (2 IT), b (2 IT) v, 1, ,b'<o) 

(3) Es tab l i sh  the i n i t i a l  deviations from the new reference o r b i t .  

A&' = $(o) - 1 

= &O) 
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(4) Again using equations (113, (119, (114), and (115) , compute 

the t i m e  h i s to r i e s  t o  T'= 2 T.  

reconvert the r e s u l t s  t o  the original- system of uni t s .  

For output patposes, it may be.desirable  t o  

( 5 )  Repeat the  above steps u n t i l  the  desired terminal condition i s  
reached. 

The accuracy obtained using t h i s  technique w i l l  depend mainly upon 

the value of a einployed. For extremely small a , it may be sa t i s f ac to ry  t o  

defer  r e c t i f i c a t i o n  t o  T = 2nn where n > l .  

above procedure is  e n t i r e l y  consistent t o  order a . 
It is  again emphasized that the 

2 

.SOLUTIONS WITH VAR- THRUST ACCELERATI(lbT 3.2.3 
Using a procedure similar to t h a t  of Section 3.2.1, i t  is possible 

t o  account f o r  time var ia t ions  i n  the  th rus t  acceleiat ion parametera .  

t he  solut ion could e a s i l y  be obtained fo r  any s o r t  of t i m e  var ia t ion ,  the 

problem of most s ignif icance involves a l i nea r  change i n  a with time. 

would correspond t o  a vehicle with constant t h rus t  whose mass decreases a t  

a constant rate. 

consider 

t h a t  &T is no larger  than order Uo. 

define the change i n  posi t ion and veloci ty  resu l t ing  frcm the  t i m e  var ian t  

port ion of the th rus t  acceleration. Firs t -order  perturbation solut ions fo r  

these quant i t ies  are 

While 

This 

L e t U  of the  preceding subsections be defined a sUo ,  then 

Le t  6p( 7) , 6 p  ( T ) ,  6 8 ( T ) ,  and 6 6 (  7) 

t o  he given by a = a + 6 7 ,  where dL is su f f i c i en t ly  small so 
0 

3 7  2 66 = &[  sinqo(4 - 4 COST - 7) + cosJb(2 s i n  T - 2 7 ) l  + O(a ). 0 
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These perturbative terms, when added t o  the previously derived 

f i r s t -o rde r  solut ions for the  a contribution (subsections 3 . 1 3 ,  3.2.1, and 

3.2.2) y ie ld  a f i r s t -o rde r  solution f o r  the l inear  time-varying th rus t  

accelerat ion case. 

hT i s  of order a,' for 7 values of i n t e r e s t ,  the above equations represent 

a second-order contribution, and may be used i n  conjunction with the previously 

derived second-order theory (subsection 3.1.3) 

0 

It should be pointed out that i f  & is  very small so that 
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SECTION 4 

CONCLUSIONS 

The preceding investigations have considered the in-plane t r a -  

j ec to r i e s  r e su l t i ng  from the application of a small th rus t  t o  an object i n  

an inverse square cen t r a l  force f i e ld .  

The ana ly t i ca l  solutions f o r  t h rus t  programs involving r ad ia l ,  

no rml ,  circumferential ,  and tangential  thrust ing were reviewed and extended. 

For the  r ad ia l  th rus t ing  case, it w a s  found t h a t  when I U l<<l/8, the radius 

vector i s  per iodic  between r 

and a p s i d a l  angle is (1 +a)n, where n 

c i r c u l a r  o rb i t .  

and (1 + 2c3ro. The frequency is  (1 + 3U)n0 
0 

i s  the mean motion of the i n i t i a l  
0 

For the normal thrust ing case, the t o t a l i t y  of motions f o r  a 

p a r t i c l e  i n i t i a l l y  i n  a c i r cu la r  Kepler o r b i t  w a s  determined. It w a s  found 

that the o r b i t s  l ie  i n  a r ing  bounded by two c i r c l e s ,  the f i r s t  with radius 

equal t o  the radius of the i n i t i a l  Kepler  o r b i t  and the second with radius 

dependent on the normal force. The second c i r c l e  lies outside the f i r s t  

c i r c l e  when the  normal force is outward and lies inside when the  normal 

force is inward. The radius of the second circle cannot exceed t w i c e  the 

radius of the f i r s t  c i r c l e  and is  reached only when the normal force i s  

0.230 times the gravi ty  force a t  the i n i t i a l  radius.  

a t t r a c t i o n  is reached only when the normal force i s  2.809 times the gravi ty  

The point of cen t r a l  
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force  of the i n i t i a l  radius. 

the two c i r c l e s .  Xowever, the  o rb i t s  are not i n  general periodic s ince 

they do not c lose.  When the  magnitude of the  normal force i s  small, t h e  

o r b i t s  are d i r e c t ,  while when the force i s  large,  the o r b i t s  are d i r e c t  

near t he  f i rs t  circle and retrograde near the second c i r c l e .  

The o r b i t  path o s c i l l a t e s  per iodica l ly  between 

For the  tangent ia l  and circumferential t h r u s t  case, the complete 

f i r s t - o r d e r  solut ions were derived using the  asymptotic method due t o  Kryloff 

and Bogoliuboff. 

the  radius vector t o  those determined by BeMey,using the  perturbation 

approach, indicates  t h a t  Benney's monotonic term is a secular  term ra the r  

than the i n i t i a l  term of an i n f i n i t e  series representing a per iodic  function. 

This d i s t i n c t i o n  is  not evident from a perturbation a n a l y s i s .  

The s imi l a r i t y  of tho, derived f i r s t -o rde r  expressions f o r  

The inves t iga t ion  has a lso  yielded perturbation solut ions of the 

d i f f e r e n t i a i  equations of motion of a vehicle moving under Iix thrust. 

Second-order solut ions w e r e  derived f o r  a vehicle departing from a circul . i r  

o r b i t .  Also f i r s t -o rde r  solutions a r e  given f o r  a vehicle departing from 

an e l l i p t i c a l  o r b i t  with small eccent r ic i ty .  

t o  form an a r b i t r a r y ,  but constant, angle with the  radius  vector. 

so lu t ions  a r e  accurate  when the  r a t i o  of t he  th rus t  acce le ra t ion  t o  the  

i n i t i a l  gravi ta t ioi la l  acceleration is much less thanunity and the time o r  

the  polar angle measured from the  i n i t i a l  pos i t ion  i s  not too large.  T r a -  

j e c t o r i e s  involving several  revolutions would have less e r r o r  accumulation 

i f  the  reference o r b i t  Jere re-established a f t e r  each revolution. The 

necessary ana lys i s  was car r ied  out, using the f i r s t -o rde r  perturbation 

theory f o r  e l l i p t i c a l  o r b i t  s t a r t i n g  conditions, t o  accomplish the  re- 

establishment of t h e  reference orb i t .  This technique gives a so lu t ion  

cons is ten t  through second-order. Since these perturbation solut ions are 

appl icable  t o  a r b i t r a r y  th rus t  angles, they complete a class of t r a j e c t o r i e s  

which includes previously published solut ions f o r  r a d i a l  and circumferential  

th rus t ing  . 

The t h r u s t  vector i s  assumed 

Thz 

Further ana lys i s  i s  required t o  e s t a b l i s h  the  accuracy of the 

perturbation solut ions as a function of t h r u s t  acce le ra t ion  magnitude 
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and t i m e .  

numerically camputed t r a j ec to r i e s .  

t o  appl ica t ion  of the  r e su l t s .  

namely those involving the select ion of an optimal t h rus t  d i rec t ion ,  

can be treated using the perturbation solut ions.  

f i nd  appl icat ion t o  spacecraft  i n  which the th rus t  vector ,  f o r  &uidanCe 

reasons, is  most conveniently directed a t  a constant angle t o  the radius 

vector .  Other obvious extensions of the per turbat ion r e s u l t s  would include 

the e f f e c t  of t i m e  varying th rus t  angles and la rger  s t a r t i n g  o r b i t  eccen- 

t r i c i t i e s .  

des i rab le .  

This could be accomplished by comparisons with precis ion 

Additional e f f o r t  could be devoted 

A whole c l a s s  of optimzation problems, 

These r e s u l t s  would 

Provision f o r  t r ea t ing  out-of-plane motion would a l s o  be 
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